Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling.
نویسندگان
چکیده
Mitochondria produce ROS (reactive oxygen species) as a by-product of aerobic respiration. Several studies in mammals and birds suggest that the most physiologically relevant ROS production is from complex I following reverse electron flow, and is highly sensitive to membrane potential. A study of Drosophila mitochondria respiring glycerol 3-phosphate revealed that membrane potential-sensitive ROS production from complex I following reverse electron flow was on the matrix side of the inner membrane. A 10 mV decrease in membrane potential was enough to abolish around 70% of the ROS produced by complex I under these conditions. Another important ROS generator in this model, glycerol-3-phosphate dehydrogenase, produced ROS mostly to the cytosolic side; this ROS production was totally insensitive to a small decrease in membrane potential (10 mV). Thus mild uncoupling may be particularly significant for ROS production from complex I on the matrix side of the mitochondrial inner membrane.
منابع مشابه
Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling.
Homeostasis of reactive oxygen species (ROS) in cardiomyocytes is critical for elucidation of normal heart physiology and pathology. Mitochondrial phospholipases A2 (mt-PLA2) have been previously suggested to be activated by ROS. Therefore, we have attempted to elucidate physiological role of such activation. We have found that function of a specific i-isoform of mitochondrial phospholipase A2 ...
متن کاملStimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential
Mild uncoupling of oxidative phosphorylation, caused by a leak of protons back into the matrix, limits mitochondrial production of ROS (reactive oxygen species). This proton leak can be induced by the lipid peroxidation products of ROS, such as HNE (4-hydroxynonenal). HNE activates uncoupling proteins (UCP1, UCP2 and UCP3) and ANT (adenine nucleotide translocase), thereby providing a negative f...
متن کاملMitochondrial ('mild') uncoupling and ROS production: physiologically relevant or not?
During the last decade, the possibility that 'mild' uncoupling could be protective against oxidative damage by diminishing ROS (reactive oxygen species) production has attracted much interest. In the present paper, we briefly examine the evidence for this possibility. It is only ROS production from succinate under reverse electron-flow conditions that is sensitive to membrane potential fluctuat...
متن کاملRole of Uncoupling Proteins in Cancer
Uncoupling proteins (UCPs) are a family of inner mitochondrial membrane proteins whose function is to allow the re-entry of protons to the mitochondrial matrix, by dissipating the proton gradient and, subsequently, decreasing membrane potential and production of reactive oxygen species (ROS). Due to their pivotal role in the intersection between energy efficiency and oxidative stress, UCPs are ...
متن کاملMild mitochondrial uncoupling impacts cellular aging in human muscles in vivo.
Faster aging is predicted in more active tissues and animals because of greater reactive oxygen species generation. Yet age-related cell loss is greater in less active cell types, such as type II muscle fibers. Mitochondrial uncoupling has been proposed as a mechanism that reduces reactive oxygen species production and could account for this paradox between longevity and activity. We distinguis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 31 Pt 6 شماره
صفحات -
تاریخ انتشار 2003